Data Science Starter Snippets
Preamble-1 / Quick Start 1
A quick start or a preamble to data science projects.
I have written my own matplotlib stylesheet, roughtly following the guidelines for scientific publications.
To edit it, simply download the stylesheet in the same directory as the notebook/script file you're working (otherwise use absolute path) on and
use that instead \(\rightarrow\) plt.style.use("./s_shifat_mpl_stylesheet.mplstyle")
.
Note: Nice thing about plt.style.use()
is, it can be mixed with other built-in (outputs of plt.style.available
) or custom styles chronologically as well using a list.
| # %%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
# some nice aesthetics
plt.style.use(
"https://gist.githubusercontent.com/s-shifat/5f35e9d53d41a3195a8a86885f989fa1/"
"raw/e0005b8b0965c819510d719896baf8aa2faec914/s_shifat_mpl_stylesheet.mplstyle"
)
# mpl.use("nbagg") # interactive backend
# %%
DATA_PATH = "./data.csv"
df = pd.read_csv(DATA_PATH)
df
# %%
df.info()
|
Preamble-2 / Quick Start 2
The above example keeps the initial plot aesthetics away from the code to reduce clutter a bit.
However, to control plot aesthetics right from your code \(\rightarrow\)
| # %%
import numpy as np
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
# some plot aesthetics
mpl.rcParams.update({
"text.usetex": False,
"font.family": "serif",
"font.serif": ["Times New Roman", "Computer Modern"],
"axes.titlesize": 14,
"axes.labelsize": 12,
"legend.fontsize": 12,
"xtick.labelsize": 12,
"xtick.direction": "out",
"ytick.labelsize": 12,
"ytick.direction": "out",
"figure.figsize": (8, 6),
})
# mpl.use("nbagg") # interactive backend
# %%
DATA_PATH = "./data.csv"
df = pd.read_csv(DATA_PATH)
df
# %%
df.info()
|